Firsh Post In Bbosearch | Klikbets.net Betting Bola

<p>Firsh Post In Bbosearch | Klikbets</p>

Link : http://www.anonimus.xyz/2017/08/klikbets-net-betting-bola-judi-bola-judi-poker-online-casino-online-togel-online-bandar-q/

WongPoker | http://www.anonimus.xyz/2017/08/wongpoker-agen-poker-agen-domino-qq-bandar-q-bandar-domino-qiu-bandar-ceme-situs-domino-q-online-terbesar-di-indonesia/

BorneoPoker | http://www.seriuseo.com/2017/12/25/borneopoker-com-bandar-poker-online-serta-bandar-q-online-terpercaya-di-indonesia/

purpose:

requirements:

Post

comments:

Post

www2.lexusdomino.com

http://www.lexusdomino.net/
http://www.lexusdomino.online/
http://www.lexusdomino.org/
http://www2.lexusdomino.com/
http://www.mediabaca.news/

purpose:

requirements:

comments:

purpose:

requirements:

comments:

robes sur mesure

"Nous sommes façonnés par ce que nous aimons." Je crois que la beauté d'une séance photo de couple réside dans la façon dont ils se regardent et s'embrassent. Même si l'amour est un sentiment international, chacun le vit différemment. Être créatif et original est un must!
https://www.persun.fr/robe-de-mariee-c85/

purpose:

Paris avec ses superbes arcades, lampadaires, jardins, fontaines et ponts est certainement l'endroit idéal pour une séance photo glamour et fabuleuse avec une touche de romantisme, ou même un échange intime et intime de voeux sur le pont des Arts lock bridge.

requirements:

La meilleure façon d'obtenir des poses originales, c'est de les faire s'approcher, de se rapprocher, d'être intime... Marcher main dans la main le long de la Seine, s'étreindre, sourire, embrasser, s'allonger dans un beau jardin ou même boire un verre de champagne en robes sur mesure, les laisser être naturel.

comments:

Tout le monde a entendu parler du fait que Paris est la ville de l'amour et de la romance, et chaque couple veut aller au moins une fois dans une vie pour visiter la ville et les beaux musées qui y sont accueillis. https://www.persun.fr/robe-de-soiree-c78/

Show links between tags, sourcetypes, apps and datamodels.

| rest splunk_server=local count=0 /servicesNS/-/-/admin/datamodel-files 
| spath input=eai:data output=base_search path=objects{}.baseSearch 
| spath input=eai:data output=constraints path=objects{}.constraints{}.search 
| eval tag_content = mvappend(base_search,constraints) 
| rex max_match=0 field=tag_content "tag=\"?(?<tag_name>\w+)\"?" 
| mvexpand tag_name 
| rename title AS datamodel 
| append 
    [| rest splunk_server=local count=0 /servicesNS/-/-/admin/eventtypes 
    | rename eai:acl.app AS app tags AS tag_name 
    | search app="*TA*" 
    | rex max_match=0 field=search "sourcetype=\"?(?<sourcetype>[^\s\"^)]+)\"?" 
    | mvexpand sourcetype 
    | mvexpand tag_name 
    | eval app_sourcetype=mvzip(app,sourcetype,"__") 
    | stats list(tag_name) as tag_name by app, sourcetype,app_sourcetype ] 
| stats list(datamodel) as datamodel, list(app) as app, list(app_sourcetype) as app_sourcetype by tag_name 
| search datamodel=* 
| stats values(datamodel) as datamodel, values(tag_name) as tags by app_sourcetype 
| eval tags=mvdedup(tags) 
| rex max_match=0 field=app_sourcetype "\"?(?<app>.+)__\"?" 
| rex max_match=0 field=app_sourcetype "__\"?(?<sourcetype>.+)\"?" 
| fields - app_sourcetype

purpose:

This search answers the questions which dashboards will my new add-on be used for in Enterprise Security.

requirements:

comments:

This is useful to see which app populates which datamodel in Enterprise Security or any other environment which datamodels.

Sahabatqq.com Agen Domino QQ Agen Domino 99 dan Poker Online Aman dan Terpercaya

Sahabatqq.com Agen Domino QQ Agen Domino 99 dan Poker Online Aman dan Terpercaya : http://informasionline.net/sahabatqq-com-agen-domino-qq-agen-domino-99-dan-poker-online-aman-dan-terpercaya/

purpose:

requirements:

comments:

purpose:

requirements:

comments:

purpose:

requirements:

comments:

User Search Restrictions and Last Logins

| rest /services/authentication/users splunk_server=local
| table title realname email roles 
| mvexpand roles 
| join roles type=outer 
    [| rest /services/authorization/roles splunk_server=local
    | fields imported* title srch* 
    | fields - *Quota *TimeWin *capabilities 
    | rex mode=sed field=srchFilter "s/^\*$/true/" 
    | rex mode=sed field=imported_srchFilter "s/^\*$/true/" 
    | eval search_restrictions=if(imported_srchFilter="","( ".srchFilter." )",if(srchFilter="","( ".imported_srchFilter." )","( ".srchFilter." ) OR ( ".imported_srchFilter." ) ")) 
    | fields - srchIndexesDefault 
    | eval srchIndexesAllowed_new=mvjoin(srchIndexesAllowed," OR index=") 
    | eval index_restrictions="( index=".srchIndexesAllowed_new." )" 
    | table title search_restrictions index_restrictions 
    | rename title AS roles ] 
| stats values(roles) AS roles values(search_restrictions) AS search_restrictions values(index_restrictions) AS index_restrictions by title,realname,email 
| rex mode=sed field=search_restrictions "s/\( \)//g" 
| eval search_restrictions=mvjoin(search_restrictions," OR ") 
| eval index_restrictions=mvjoin(index_restrictions," OR ") 
| eval realname=upper(realname)
| rename title AS username
| eval restrictions=if(search_restrictions="( )",index_restrictions,search_restrictions." ".index_restrictions)
| table username email username roles restrictions
| search username=* 
| rex mode=sed field=restrictions "s/^ OR //g" 
| join type=outer username 
    [ search (index=_audit "login attempt info=succeeded) OR (index=_internal "GET /splunk/en-US/account/login") 
    | stats max(_time) AS "last_login" by user 
    | rename user AS username ] 
| eval days_ago=floor((now()-last_login)/86400) 
| eval last_login=strftime(last_login,"%Y-%m-%d %H:%M:%S") 
| fillnull last_login value="Never"

purpose:

requirements:

comments:

Shows a table showing the inherited search and index restrictions for each user, represented as an SPL string. In certain cases it may not be 100% accurate, but it covers most instances that I have run into. NOTE: does not account for `searchFilterSelecting = false` defined in authorize.conf

Max TPS per client

Example1:
2017-07-20 14:12:49.647,prdtla002-05250936-002dd783ee,/whatever/v1/whatever,none,255.255.255.255,etc
or
Example2:
2017-07-20 14:12:49.644,ie2-tla04b-prd-07201200-00000019db,/whatever/v2.0/summary,none,255.255.255.255,etc

purpose:

requirements:

comments:

I have to migrate a query from Sumo to Splunk. The query looks like this in sumo: "_sourceCategory=production_bf-currency-exchange-service_cougar-access NOT "healthcheck" | parse regex "prd(?[a-zA-Z]{3,4})" | timeslice 1m | count as tpm by _timeslice, client | tpm/60 as tps | _timeslice as _messageTime | max(tps) as MAX_TPS by client | sort by MAX_TPS desc" this query only works for the first example, on top of this now I need to add a regex for the second example as well.

purpose:

requirements:

comments:

Size distribution of my auto_high_volume buckets

| dbinspect [
  | rest /services/data/indexes      
  | eval index=title      
  | stats values(maxDataSize) as maxDataSize by index      
  | where maxDataSize="auto_high_volume"      
  | eval index="index=".index      
  | stats values(index) as indexes      
  | mvcombine delim=" " indexes     
  | eval search=indexes ] 
| bin sizeOnDiskMB span=2log4 
| chart limit=0 count by sizeOnDiskMB index

purpose:

requirements:

comments:

This search was developed to visualise if buckets were being rolled early.

SahabatQQ.com Agen Domino QQ Agen Domino 99 Dan Poker Online Aman Dan Terpercaya

SahabatQQ.com Agen Domino QQ Agen Domino 99 Dan Poker Online Aman Dan Terpercaya :

http://www.pokeragenonline.tk/sahabatqq-com-agen-domino-qq-agen-domino-99-dan-poker-online-aman-dan-terpercaya/

purpose:

requirements:

SahabatQQ.com Agen Domino QQ Agen Domino 99 Dan Poker Online Aman Dan Terpercaya

comments:

SahabatQQ.com Agen Domino QQ Agen Domino 99 Dan Poker Online Aman Dan Terpercaya

How many days in this month?

 | makeresults 
 | eval days_in_month=mvindex(split(if(tonumber(strftime(_time,"%y"))%4=0,"31,29,31,30,31,30,31,31,30,31,30,31","31,28,31,30,31,30,31,31,30,31,30,31"),","),tonumber(strftime(_time,"%m"))-1)

purpose:

Given _time how many days are in this month, 31? 30? 28? 29? This eval statement uses a lookup held in a multi-value array to pull out the value in a computationally efficient manor.

requirements:

comments:

The eval expression is the solution, and the example only uses makeresults to fake create sample data

Pearson Correlation Coefficient

index=*
| fields x y
| eval n=1 | eval xx=x*x | eval xy=x*y | eval yy=y*y
| addcoltotals  | tail 1
| eval rho_xy=(xy/n-x/n*y/n)/(sqrt(xx/n-(x/n)*(x/n))*sqrt(yy/n-(y/n)*(y/n)))
| fields rho_xy

purpose:

requirements:

comments:

This SPL query calculates the Pearson coefficient of two fields named x and y.

Indexes my user can search.

| rest /services/data/indexes
| search
    [
    | rest /services/data/indexes
    | dedup title
    | table title
    | search
        [
            | rest splunk_server=local /services/authorization/roles
            | search
                [
                        | rest splunk_server=local /services/authentication/users
                        | search
                            [
                                        | rest /services/authentication/current-context
                                        | search type=splunk
                                        | table username
                                        | rename username as title ]
| fields roles
| mvexpand roles
| rename roles as title] imported_srchIndexesAllowed=*
| table imported_srchIndexesAllowed
| rename imported_srchIndexesAllowed as title
| mvexpand title] ]
| stats values(splunk_server) as splunkserver by title
| eval splunkserver=mvjoin(splunkserver,":")
| lookup non_internal_indexes title as title OUTPUT description as description
| fields title, description, splunkserver
| rename title AS Index

purpose:

requirements:

lookup csv with columns "title" of Index and "description"

comments:

We use in a ~200 Users env to show the user in which Index he is allowed to search.

Work out data volumes by source type

| metadata type=sourcetypes
| noop sample_ratio=1000
| append [ search index=*  
   | eval size=length(_raw) 
   | stats avg(size) as average_event_size by sourcetype index
   ]
| stats values(totalCount) as total_events values(average_event_size) as average_event_size by sourcetype
| addinfo
| eval period_days=(info_max_time-info_min_time)/(24*60*60)
| eval totalMB_per_day=floor(total_events*average_event_size/period_days/1024/1024)
| table sourcetype totalMB_per_day

purpose:

Efficiently calculate how much data is being indexed per day by source type. Very useful for calculating enterprise security data volumes

requirements:

Requires 6.3.x or later for the event sampling feature

comments:

Combines results from | metadata for counts and then multiplies this by the average event size. Automatically accounts for time ranges. You will need to modify the sample rate to be suitable for your data volume. The metadata search turns out to be very approximate and counts the values associate with buckets, if you have buckets which are open for a very long time it will take the value for the entire period of the bucket, not the period of your search time range. Consider using tstats if this is an issue in your environment.

Combine dbinspect and REST api data for buckets

| dbinspect index=*
| foreach * [eval dbinspect_<<FIELD>> = '<<FIELD>>']
| table dbinspect_*
| append [
  | rest splunk_server_group=dmc_group_cluster_master "/services/cluster/master/buckets"
  | foreach * [eval rest_api_<<FIELD>> = '<<FIELD>>']
  | table rest_api_* 
  ]
| eval bucketId=if(isNull(rest_api_title),dbinspect_bucketId,rest_api_title)
| stats values(*) as * by bucketId
| foreach rest_api_peers.*.* [eval rest_api_<<MATCHSEG2>>=""]
| foreach rest_api_peers.*.* [eval rest_api_<<MATCHSEG2>>=if("<<MATCHSEG1>>"=dbinspect_bucketId,'<<FIELD>>','<<MATCHSEG2>>')]
| fields - rest_api_peers.*

purpose:

requirements:

Needs to be executed on a search head that can query the cluster master REST API

comments:

The dbinspect API doesn't return consistent information about the size of buckets.

Create a Normal Curve

| makeresults count=50000
| eval r = random() / (pow(2,31)-1)
| eval r2 = random() / (pow(2,31)-1)
| eval normal = sqrt(-2 * ln(r)) * cos(2 * pi() * r2)
| bin normal span=0.1
| stats count by normal
| makecontinuous normal

purpose:

requirements:

comments:

Props to Alexander (Xander) Johnson

Time Travel or How to move a field through time for prediction purposes

| inputlookup app_usage.csv | reverse | streamstats window=1 current=f first(RemoteAccess) as RemoteAccessFromFuture | reverse | ...

purpose:

Align a future value with the features in the past based on some time delta (Time to Decision, Time to Action) for machine learning or predictive analytics in general.

requirements:

comments:

Props to Tom LaGatta Be careful , check 1) for current=f 2) if your time frame is correct for the |reverse bit. 3) if you are confused about first() verse last(), use a line chart and check

cumulative distribution function

| stats count by X
| eventstats sum(count) as total 
| eval probXi=count/total
| sort X
| streamstats sum(probXi) as CDF

purpose:

requirements:

comments:

props to Pierre Brunel

Chart HTTP Status Category % by URL (using join)

index=* sourcetype=access* status=* | rex field=bc_uri "/(?<route>[^/]*)/" | stats count as scount by route, status_type | join route [search index=* sourcetype=access* status=* | rex field=bc_uri "/(?<route>[^/]*)/" | stats count as ttl by route] | eval pct = round((scount / ttl), 2)."%" | xyseries route status_type pct

purpose:

requirements:

comments:

Chart HTTP Status Category % by URL

index=* sourcetype=access* status=* | rex field=bc_uri "/(?<route>[^/]*)/" | rangemap field=status code_100=100-199 code_200=200-299 code_300=300-399 code_400=400-499 code_500=500-599 | rename range as stcat | stats count as sct by route, stcat |  eventstats sum(sct) as ttl by route | eval pct = round((sct/ttl), 2)."%" | xyseries route stcat pct

purpose:

creates a table where the rows are URL values, the columns are HTTP status categories and the cells are the percentage for that status / url combination

requirements:

comments:

Search to end all errors

index=_internal sourcetype="splunkd" log_level="ERROR" 
| stats sparkline count dc(host) as hosts last(_raw) as last_raw_msg values(sourcetype) as sourcetype last(_time) as last_msg_time first(_time) as first_msg_time values(index) as index by punct 
| eval delta=round((first_msg_time-last_msg_time),2) 
| eval msg_per_sec=round((count/delta),2) 
| convert ctime(last_msg_time) ctime(first_msg_time) 
| table last_raw_msg count hosts sparkline msg_per_sec sourcetype index first_msg_time last_msg_time delta  | sort -count

purpose:

identifies frequently occurring errors in your splunk instance. LSS knocking out the top 10 on this list will make your splunk instance very happy

requirements:

comments:

Machines with Multiple Services

index=firewalltraffic | stats count by src_ip dst_ip dst_port protocol | stats dc(dst_port) as "Different Ports" by dst_ip

purpose:

Detect machines offering multiple services

requirements:

Firewall Traffic and extracted source/destination IP + SRC_Port/DST_Port

comments:

  • Search Firewall Logs index=
  • Make sure fields are extracted fine – you can even let this run in realtime – looks cool: stats count by src_ip dst_ip dst_port protocol
    • You might also use this one to trigger down to say – i can filter only on FTP Traffic (Port 21), SSH Traffic, Web, SMTP, Filter to show what active directory domain controllers are doing by SRC/DST IP etc.
  • Now we only want to see which IP's offering services on how many different ports: | stats dc(dst_port) as "Different Ports" by dst_ip
  • You can also switch by dst_ip with src_ip so you see which host is consuming the most different services
  • You can also filter it down with a additional | where "Different Ports" > 5

json mv extraction

...
# clean up some field names for ease of typing later
| rename events{}.code AS a_c, events{}.message AS a_m, events{}.timestamp AS a_ts, events{}.priority as a_p
# combine mv fields together using mvzip (to get tuples as comma-delim'd strings)
| eval b_combined = mvzip(mvzip(mvzip(a_c, a_m), a_ts), a_p)
# get rid of the a_* fields, simply b/c we don't need them clogging up the ui
| fields - a_*
# expand out the combined fields
| mvexpand b_combined
# extract nicely named fields from the results (using the comma from mvzip as the delimiter)
| rex field=b_combined "(?<e_c>[^,]*),(?<e_m>[^,]*),(?<e_ts>[^,]*),(?<e_p>[^,]*)"
# get rid of the combined field b/c we don't need it
| fields - b_*
# urldecode the field that you care about
| eval e_m = urldecode(e_m)

purpose:

requirements:

some json data with pretty specific structure

comments:

Search Golf - Episode 1

# source the events in chron order (so "start" is before "end")
index=cst sourcetype=mav-golf | reverse 
# add a line number / temp id to the events
| eval lc=1 | accum lc 
# extract a field to make it easier to deal with action
#  not really necessary in this example - could just search for "start" / "end"
| rex field=_raw "ID=\S\s(?<action>\S+)\s" | stats list(action) as action by ID, lc 
# find action=start for each identifier and join that back into each row
| join ID type=left [search index=cst sourcetype=mav-golf | reverse | eval lc=1 | accum lc | rex field=_raw "ID=\S\s(?<action>\S+)\s"  | search action=start | stats first(lc) as open by ID] 
# find action=end for each identifier and join that back into each row
| join ID type=left [search index=cst sourcetype=mav-golf | reverse | eval lc=1 | accum lc | rex field=_raw "ID=\S\s(?<action>\S+)\s"  | search action=end | stats last(lc) as close by ID] 
# lastly, test each event to see if it's own id is between the start and end.
#  if so - count it.
| eval sc = if(lc>open, if(lc<close, 1, 0), 0) 
# And then sum up those events which should be counted.
| stats sum(sc) as num_events by ID

purpose:

Find the number of events within a sequence of events based on a shared identifier. Keywords ("start" and "end") mark the beginning and end of the sequence. The search cannot use the transaction command.

requirements:

Data like the following: 01/01/2014 01:01:00.003 ID=a start blah blah 01/01/2014 01:01:01.003 ID=d more blah blah 01/01/2014 01:01:02.003 ID=a end blah blah 01/01/2014 01:01:03.003 ID=b start blah blah 01/01/2014 01:01:04.003 ID=c start blah blah 01/01/2014 01:01:05.003 ID=y more blah blah 01/01/2014 01:01:05.006 ID=c more blah blah 01/01/2014 01:01:05.033 ID=c more blah blah 01/01/2014 01:01:06.003 ID=c end blah blah 01/01/2014 01:01:06.033 ID=b more blah blah 01/01/2014 01:01:07.003 ID=b end blah blah 01/01/2014 01:01:08.004 ID=c more blah blah 01/01/2014 01:01:09.005 ID=b more blah blah

comments:

song puzzle answer

index=music-puzzle sourcetype=test3 | rename song.parts{}.id as a__pid, song.parts{}.part as a__ppt, song.parts{}.seq as a__pseq | eval tuples = mvzip(mvzip(a__pid, a__ppt, "~~"),a__pseq, "~~") | fields - a__* | mvexpand tuples | rex field=tuples "(?<s_p_id>[^~]+)~~(?<s_p_text>[^~]+)~~(?<s_p_seq>[^~]+)" | sort song.name, s_p_seq | eval s_p_text = urldecode(s_p_text) | stats list(s_p_text) by song.name

purpose:

requirements:

comments:

Unauthorized Foreign Activity

layout=edit | geoip clientip as clientip | table _time clientip client_country | where client_country NOT ("Germany" OR "Austria" OR "Switzerland")

purpose:

Detect unauthorized admin activity via foreign country

requirements:

Logs with external source IP's

comments:

  • Search for admin activity – like on my webpage in a CMS system for example for "layout=edit"
  • Display all the IP's with table clientip _time
  • Enrich them with geoip lookup (geoip clientip)
  • Display all changes with geo information:
    • layout=edit | lookup geoip clientip as clientip | table _time clientip client_country
  • Review them and create a simple whitelists | where client_country NOT ("Germany" OR "Austria" OR "Switzerland")

Extract SQL Insert Params

sourcetype=stream:mysql* query="insert into*" | rex "insert into \S* \((?<aaa>[^)]+)\) values \((?<bbb>[^)]+)\)" | rex mode=sed field=bbb "s/\\\\\"//g" | makemv aaa delim="," | makemv bbb delim="," | eval a_kvfield = mvzip(aaa, bbb) | extract jam_kv_extract | timechart span=1s per_second(m_value) by m_name

purpose:

extracts fields from a SQL Insert statement so that the values inserted into the database can be manipulated via splunk searches. In this case, it is used in conjunction with splunk stream & mysql, but should work with any source / database technology.

requirements:

comments:

Auth anomaly basic with haversine

index=geod 
| iplocation clientip 
| sort _time 
| strcat lat "," lon latlon 
| streamstats current=f global=f window=1 last(latlon) as last_latlon
| eval last_latlon=if(isnull(last_latlon), latlon, last_latlon)
| streamstats current=f global=f window=1 last(_time) as last_ts
| eval time_since_last = _time - last_ts
| eval time_since_last=if(isnull(time_since_last), 0, time_since_last)
| haversine originField=last_latlon outputField=distance units=mi latlon
| eval speed=if(time_since_last==0, 0, (distance/(time_since_last/60/60)))
| strcat speed " MPH" speed
| table user, distance, _time, time_since_last, speed, _raw

purpose:

Find the speed needed to cover the distance between the ip-location specified in two different login events

requirements:

haversine app clientip as ip address

comments:

XML with spath

index=demo1 sourcetype=xml-log-data | spath input=message | where strptime('message.updated_at', "%Y-%m-%d %H:%M:%S %z") > strptime("2013-08-07 00:00:00", "%Y-%m-%d %H:%M:%S")

purpose:

searches for events which contain a field called "message" that composite field is expanded via a call to spath. Then a value from the resulting expansion is used to find events that contain a date meeting certain criteria.

requirements:

comments:

Speed / Distance Login Anomaly

index=geod
| iplocation clientip 
| sort _time 
| strcat lat "," lon latlon 
| streamstats current=f global=f window=1 last(latlon) as last_latlon
| eval last_latlon=if(isnull(last_latlon), latlon, last_latlon)
| streamstats current=f global=f window=1 last(_time) as last_ts
| eval time_since_last = _time - last_ts
| eval time_since_last=if(isnull(time_since_last), 0, time_since_last)
| haversine originField=last_latlon outputField=distance units=mi latlon
| eval speed=if(time_since_last==0, 0, (distance/(time_since_last/60/60)))
| where speed > 500
| strcat speed " MPH" speed
| table user, distance, _time, time_since_last, speed, _raw

purpose:

Find those tuples of events where the speed needed to cover distance in time between events is greater than 500MPH

requirements:

haversine app clientip

comments:

Taruhan Terpercaya

purpose:

requirements:

comments:

poker



 Dengan server dan sistem teknologi berkecepatan tinggi akan membuat permainan poker anda lebih menarik dan dapat bermain besama teman dan member kami yang lain.  Hanya dengan melakukan login dan langsung bermain tanpa download.JAWAPKR.NET 
<a href="http://jawapkr.net/"><strong>BANDARQ</strong></a> dengan sistem keamanan tercanggih yang dapat menjaga data para member. merupakan salah satu <b>Situs Poker</b>,  
<a href="http://jawapkr.net/"><b>DominoQQ</b></a> dan ceme online terbaik di indonesia, situs <a href="http://jawapkr.net/"><b>DewaPoker</b></a>,  <a href="http://jawapkr.net/">Agen Domino</a> dengan deposit dan withdraw yang terjangkau.
JAWAPKR.NET Situs judi online poker memberikan Inovasi Terbaru Untuk Anda Pencinta Agen Poker  dan Bandar Ceme Terbaik, Dengan Jackpot Berlimpah setiap hari nya. 
<a href="http://jawapkr.net/"><b>QIU QIU</b></a>.Segera bergabung dengan agen jawapkr dan raih kemenangan anda.

Dengan kelebihan bandar bola online Sbobet indonesia terbaik, <a href="http://cmobet.co/" title="agen bola">Agen bola</a>, <a href="http://cmobet.co/" title="agen sbobbet">agen sbobet</a>, <a href="http://cmobet.co/" title="judi bola">judi bola</a>, <a href="http://cmobet.co/" title="taruhan bola">taruhan bola</a>, <a href="http://cmobet.co/" title="ibcbet">ibcbet</a>, <a href="http://cmobet.co/" title="bandar bola">bandar bola</a> cmobet tentunya membuat anda lebih yakin dalam memutuskan bergabung bersama pihak agen bola terpercaya saat ini. 
helidomino adalah situs  <a href="http://helidomino.com">Domino99</a> hadir dengan menyajikan <strong>qq online</strong> terbaik dan terpercaya. situs ini merupakan sumber referensi bagi para penjudi dalam memilih situs agen judi yang ingin digunakan untuk berjudi. helidomino <a href="http://helidomino.com">situs bandarq</a> terpercaya dan teraman di indonesia dengan kualitas permainan <a href="http://helidomino.com">QQ ONLINE</a> terbaik.

<b><a href="https://pastibet.co/" target="_blank">SBOBET CASINO</a></b> | AGEN SBOBET | AGEN BOLA | AGEN JUDI CASINO | AGEN JUDI BOLA
Pastibet88 berperan sebagai Agen Bola Online yang menyediakan aneka jenis permainan judi diantaranya seperti taruhan bola, bola tangkas, casino dan juga poker online.<br />
<br />
Dan dalam permainan taruhan bola, Pastibet <b><a href="https://pastibet.co/" target="_blank">Agen bola</a></b> &nbsp;pastibet sendiri jelas menjadi situs terbaik karena memang didukung oleh Sbobet, Ibcbet (Maxbet), serta adanya Cmdbet (368Bet). Pada jenis dari permainan Casino Online ini kami menawrakan adanya 3 jenis game populer casino lainnya yaitu Sbobet Casino (338A), GD88, Ion Casino, dan sedangkan untuk jenis permainan bola tangkas ini, kami menyajikan permainan 88 tangkas yang menjadi permainan terpopuler di Indonesia dalam jenis permainan tangkas online.<br />
<br />
segera bergabung dengan<b><a href="https://pastibet.co/" target="_blank"> Agen sbobet</a></b> <b><a href="https://pastibet.co/" target="_blank">agen judi casino</a></b> dan <b><a href="https://pastibet.co/" target="_blank">agen judi bola</a></b>

Agen Bola | Sbobet Online  | Agen Sbobet
ArenaJuara Merupakan Agen Judi Online Terpercaya Sekaligus Sebagai <b><a href="http://arenajuara.com/">Agen Bola</a></b> Online,<b><a href="http://arenajuara.com/">Agen Sbobet</a></b>, Bandar Casino Online Yang Menyediakan Berbagai Jenis Permainan Judi Online, Seperti: Taruhan Bola, Casino Online,<b><a href="http://arenajuara.com/">Sbobet Online</a></b>, Judi Poker Online, QQ, Capsa, Ceme Dan Slots Game Terbaru Yang Dapat Diakses Menggunakan 1 User ID. Cukup Dengan Minimal Deposit IDR 25,000,- Sudah Bisa Bermain Semua Jenis Permainan Di Website Kami. Daftar Akun Anda Sekarang Juga Dan Dapatkan Bonus Menarik Dari Kami.
ArenaJuara Agen Judi Online Terpercaya

<a href="https://jasabandarq.net/" style="background-color: transparent; box-sizing: border-box; color: #2a975c; outline: none !important; text-decoration-line: none; transition: all 0.3s; word-break: break-all;" target="_blank" title="https://jasabandarq.net/">Jasabandarq<span class="Apple-converted-space">&nbsp;</span></a>|<span class="Apple-converted-space">&nbsp;</span><a href="https://jasabandarq.net/" style="background-color: transparent; box-sizing: border-box; color: #2a975c; outline: none !important; text-decoration-line: none; transition: all 0.3s; word-break: break-all;" target="_blank" title="https://jasabandarq.net/">Situs Bandarq Online</a><span class="Apple-converted-space">&nbsp;</span>|<span class="Apple-converted-space">&nbsp;</span><a href="https://jasabandarq.net/" style="background-color: transparent; box-sizing: border-box; color: #2a975c; outline: none !important; text-decoration-line: none; transition: all 0.3s; word-break: break-all;" target="_blank" title="https://jasabandarq.net/">Domino Qiu Qiu</a><span class="Apple-converted-space">&nbsp;</span>|<span class="Apple-converted-space">&nbsp;</span><a href="https://jasabandarq.net/" style="background-color: transparent; box-sizing: border-box; color: #2a975c; outline: none !important; text-decoration-line: none; transition: all 0.3s; word-break: break-all;" target="_blank" title="https://jasabandarq.net/">Poker Online Terpercaya</a><span class="Apple-converted-space">&nbsp;</span>| Jasabandarq memberikan sebuah review menarik seputar pada permainan dari situs bandarq, domino qiu qiu, poker online terpercaya yang ada di Indonesia</div>

<b><a href="http://www.iontogel.com/" target="_blank">Togel Singapura</a></b> - <a href="http://www.iontogel.com/" target="_blank">Togel Hongkong</a> - Togel Online - HongkongPools - IONTOGEL
IONTOGEL Bandar Togel Online SingaporePools Dan HongkongPools Terpercaya, Proses Register Mudah Dan Dapat Di Mainkan Melalui WAP.Kini Anda Dapat Bermain Togel Online Dengan Diskon Hingga 67% Serta Minimal Deposit Withdraw Yang Sanggat Murah Hanya rp 10ribu.IonTogel Bandar Judi Togel Online Dengan Server Terbaru Sehingga Lebih Mudah Dalam Bermain <b><a href="http://www.iontogel.com/" target="_blank">Togel Online</a></b> yang terpernting adalah ion togel pasti membayar setiap member yang menang atau JP dalam setiap keluaran togel<br />

http://www.iontogel.com
Togel Singapura - Togel Hongkong - Togel Online - HongkongPools - IONTOGEL
IONTOGEL Bandar Togel Online SingaporePools Dan HongkongPools Terpercaya, Proses Register Mudah Dan Dapat Di Mainkan Melalui WAP.Kini Anda Dapat Bermain Togel Online Dengan Diskon Hingga 67% Serta Minimal Deposit Withdraw Yang Sanggat Murah Hanya rp 10ribu.IonTogel Bandar Judi Togel Online Dengan Server Terbaru Sehingga Lebih Mudah Dalam Bermain Togel Online yang terpernting adalah ion togel pasti membayar setiap member yang menang atau JP dalam setiap keluaran togel

purpose:

requirements:

comments:

geo-location w/ user home base lookup

index=geod
# get some location information
| iplocation clientip
# lookup user details from a lookup table
#  including their home location
| lookup user_home_lu user as user
# calculate the distance between the login location
#  and the user's home location
#  using the haversine app (http://apps.splunk.com/app/936/)
| haversine originField=home_latlon units=mi inputFieldLat=lat inputFieldLon=lon
# limit the list to those where the distance is greater
#  than 500 miles
| where distance > 500
# clean up for reporting purposes
| strcat City ", " Region cs
# report the results
| fields user, cs, distance

purpose:

find users that are logging in from a location which is greater than 500 miles away from the registered home office

requirements:

haversine app clientip lookup table with user > home_latlon

comments:

json spath w/ date

... | spath input=message | where strptime('updated_at', "%Y-%m-%d %H:%M:%S %z") > strptime("2013-08-07 00:00:00", "%Y-%m-%d %H:%M:%S")

purpose:

searches for events which contain a field called "message". That field contains json payload and is expanded via a call to spath. Then a value from the resulting expansion is used to find events that contain a date meeting certain criteria.

requirements:

comments:

Simple Outlier Search

error |stats count by host| eventstats avg(count) as avg stdevp(count) as stdevp | eval ub=avg+2*stdevp, lb=avg-2*stdevp, is_outlier=if(count<lb, 1, if(count>ub, 1, 0)) | where is_outlier=1

purpose:

Find outliers - hosts that have an error count which is greater than two standard deviations away from the mean.

requirements:

hosts with errors. alternatively, you can alter the search (before pipe) to source just about anything else that you'd like to analyze.

comments:

Detect Machines with High Threatscore

index=<replace> | stats count by src_ip dst_ip dst_port protocol | lookup threatscore clientip as dst_ip | sort –threatscore | where threatscore>0

purpose:

Detect machines/applications who are potentially infected and have active running malware on it. Even use it to detect fraud for shopping site orders coming from bad IP's

requirements:

machine data with external IP's + IP Reputation App

comments:

  • Search Logs index=
  • Make sure fields are extracted fine – you can even let this run in realtime – looks cool: | stats count by src_ip dst_ip dst_port protocol
  • Now we enrich the data with | lookup threatscore clientip as dst_ip
  • Now as there is a new field evaluated (Threatscore) we want to show the IP's with the highest threatscore first by sorting it: | sort –threatscore
  • And now we only want to see malicious connections instead of the good once: | where threatscore>0

Simple Top 5 Attackers

sourcetype = "juniper:idp" attack* | top limit=5 src_ip

purpose:

Find the top 5 ip addresses that are attempting to attack us.

requirements:

juniper:idp data

comments:

Detect Clock Skew

| rest /services/server/info
| eval updated_t=round(strptime(updated, "%Y-%m-%dT%H:%M:%S%z"))
| eval delta_t=now()-updated_t
| eval delta=tostring(abs(delta_t), "duration")
| table serverName, updated, updated_t, delta, delta_t

purpose:

Check for server clock skew

requirements:

comments:

If delta is anything other than about 00:00:01 (which is easy to account for when processing a lot of indexers), you may have clock skew.

Detect Account Sharing

…. | stats dc(src_ip) as ip_count by user

purpose:

Detect Users who login from multiple IP's / User account Sharing

requirements:

Login logs with Username + Source IP field extractions

comments:

  • … - first search for something, maybe with logon/login etc. and review if there are the proper logs for logins and field extractions that are working
  • Do stats to show the distinct count of different source ip's used per user | stats dc(src_ip) as ip_count by user

Find Rare Processes (windows)

sourcetype=winregistry | rare process_image

purpose:

find rarely seen windows processes. might indicate custom malware.

requirements:

winregistry data

comments:

Time between events

<search>
| sort _time 
| streamstats current=f global=f window=1 last(_time) as last_ts 
| eval time_since_last = _time - last_ts 
| fieldformat time_since_last = tostring(time_since_last, "duration")

purpose:

add a field to each event which is the time between this event and the previous one. duration between events

requirements:

any data. the only field requirement in this search is _time

comments:

Splunk Server's Time

* | head 1 | eval tnow = now() | fieldformat tnow=strftime(tnow, "%c %Z") | table tnow

purpose:

shows the time according to the splunk server

requirements:

comments:

More than a day between events

<search>
| sort _time
| streamstats current=f global=f window=1 last(_time) as last_ts
| eval time_since_last = _time - last_ts
| fieldformat time_since_last = tostring(time_since_last, "duration")
| where time_since_last > 60*60*24

purpose:

find situations where there is more than a day between two events

requirements:

any events. the only field dependency is _time

comments:

Authentication Anomalies via "area" algorithm

`authentication` 
| search ( action="success" ) 
| eval citycountry=src_city+", "+src_country 
| stats (name, purpose, rqts, searchstring, created_at, updated_at, commentary) VALUES(citycountry) as CityCountry(name, purpose, rqts, searchstring, created_at, updated_at, commentary) VALUES, dc(citycountry) as loccount, max(src_lat) as maxlat, min(src_lat) as minlat,max(src_long) as maxlong, min(src_long) as minlong by user 
| eval delta_lat = abs(maxlat-minlat) 
| eval delta_long=abs(maxlong-minlong) 
| eval area= delta_lat * delta_long * loccount 
| where area > 1000

purpose:

Use 'area' to identify whether a given person could travel the distance between login events.

requirements:

ES app (or something with a matching macro

comments:

Auth Anomalies over time window

tag=authentication action=success  
| iplocation src  
| eval date=strftime(epoch, "%Y-%m-%d %H:%M:%S") 
| eval short_lon=round(lon, 2)  
| eval short_lat=round(lat, 2)  
| strcat short_lat "," short_lon as latlon  
| transaction user maxspan=12h maxevents=2 mvlist=t mvraw=f delim="|" 
| eval first_src=mvindex(src,0)  
| eval last_src=mvindex(src,1)  
| where first_src!=last_src  
| eval first_city=mvindex(City,0)  
| eval second_city=mvindex(City,1)  
| where first_city!=second_city 
| eval first_latlon=mvindex(latlon, 0)  
| eval second_latlon=mvindex(latlon, 1)  
| haversine originField=first_latlon second_latlon units=mil  
| eval rate_mps = distance/duration  
| eval rate_mph = rate_mps * 3600  
| eval distance=round(distance, 2)  
| rename distance as "Distance (Miles)" 
| eval tdm=duration/60  
| eval tdm=round(tdm, 2)  
| rename tdm as "Time Difference (Minutes)"  
| rename rate_mph as "Speed (MPH)" 
| makemv delim="|" src 
| mvexpand src 
| rename src as clientip 
| fields user clientip latlon "Speed (MPH)"  
| search "Speed (MPH)" > 500 
| iplocation clientip 
| makemv delim="|" user 
| eval username=mvindex(user,0) 
| geostats count by username

purpose:

Use the Haversine app (and formula) to identify whether a user would be able to travel the distance between login events fast enough to make it valid

requirements:

comments: